A Stream is a series of objects. The source of a stream is an Array, Collection, or other I/O source. A Stream does not store data; it performs intermediate operations.
Streams can filter and manipulate the elements of their source. Streams are lazy, meaning the source and intermediate operations do nothing until objects are needed by the terminal operation.
The Streams API is contained in the java.util.stream package.
A water filter is a good example of streams. It processes the water stream through multiple filters, performing purification, reverse osmosis, and refinement, producing clean drinking water. The filter does not store water; it simply processes the water stream.
Let's create a stream from a collection and print all its elements. The following example creates a Stream from the list collection and prints all elements of the collection using its forEach method.
List String items = Arrays.asList("One", "Two", "Three", "Three", "Four"); // Create stream Stream String stream = items.stream(); // Print all elements from stream stream.forEach(e -> { System.out.println(e); });
Stream elements can be sorted using sorted() method. The following example will create a stream, sort its elements using sorted() method, and then print all elements.
items.stream().sorted().forEach(e -> { System.out.println(e); });
Stream elements can be modified using map() method. The following example will create a stream, convert each element into the upper-case using its map() method, and then print all elements.
items.stream().map(e -> e.toUpperCase()).forEach(e -> { System.out.println(e); });
Stream elements can be filtered using filter() method. The following example will filter elements starting with T character using filter() method, convert them into upper case, and then print all elements.
items.stream().filter(e -> e.startsWith("T")).map(e -> e.toUpperCase()).forEach(e -> { System.out.println(e); });
Stream can remove its duplicate elements using distinct() method. The following example will filter elements, remove duplicate elements, convert elements to upper case, then print all elements.
items.stream().filter(e -> e.startsWith("T")).distinct().map(e -> e.toUpperCase()).forEach(e -> { System.out.println(e); });
The following example will filter elements, remove duplicate elements, convert elements to upper case, sort elements then print all elements.
items.stream().filter(e -> e.startsWith("T")).distinct().map(e -> e.toUpperCase()).sorted().forEach(e -> { System.out.println(e); });
You can get processed elements from Stream into a collection using collect() method.
List String l = items.stream().filter(e -> e.startsWith("T")).distinct().map(e -> e.toUpperCase()).sorted().collect(Collectors.toList());
Stream and Collection look similar but there are major differences between both:
A stream can be created from arrays, collections, files, and other I/O sources.
List collection, Set collections, and arrays are the common sources of the stream. Map can not be directly used as a source.
String[] a = { "One", "Two", "Three", "Four" }; Stream String aStream = Arrays.stream(a); List String l = Arrays.asList("One", "Two", "Three", "Four"); Stream String lStream = l.stream();
Data from File and Network can be used as a source to the stream.
Stream String fileData = Files.lines(Path.of("data.txt"));
A Stream can be generated from a function that returns elements for the stream.
For example in this example stream is created from random.nextInt() method. After creating stream we print 5 random numbers.
Random random = new Random(); StreamInteger randomNumbers = Stream.generate(random::nextInt); randomNumbers.limit(5).forEach(System.out::println); Stream Double randomNumbers = Stream.generate(Math::random);
An Intermediate Operation transforms one stream into another stream.
Stream methods filter(), map(), distinct(), sorted() etc, perform intermediate operations, and produce another stream.
List items = Arrays.asList("One", "Two", "Three", "Three", "Four"); stream = items.stream(); items.stream().sorted(); items.stream().map(e -> e.toUpperCase()); items.stream().filter(e -> e.startsWith("T")); items.stream().distinct();
Intermediate operations are
Channing makes Stream powerful. The output of one stream can be an input of another stream it is called Channing.
You can chain multiple operations on stream and produce the desired result using the least code.
For example, the following code applies Channing operations filter, distinct, map, sort, and finally prints all elements of steam in a single line of code.
items.stream().filter(e -> e.startsWith("T")).distinct().map(e -> e.toUpperCase()).sorted();
Streams are lazy, which means sources and intermediate operations do not do any work until a terminal is executed.
List items = Arrays.asList("One", "Two", "Three", "Three", "Four"); stream = items.stream(); items.stream().filter(e -> e.startsWith("T")).distinct().map(e -> e.toUpperCase()).sorted().forEach(e -> { System.out.println(e); });
In the above example filter, distinct, map, and sorted intermediate operations will not be executed until the terminal operation foreach() method is called.
Terminal operations are
You can performer max, min, average statistical operation on integer or double stream. Classes IntSummaryStatistics and DoubleSummaryStatistics are used to get integer and double value statistical operations. Methods mapToInt() and mapToDouble() are used to convert stream elements into integers or double values before applying the statistical operations.
Following example will apply statistical operations on marks and account balance:
ListInteger marks = Arrays.asList(80, 90, 75, 50, 45, 95, 75); IntSummaryStatistics mStats = marks.stream().mapToInt(x -> x).summaryStatistics(); System.out.println("## Marks statistics ##"); System.out.println("Max Marks: " + mStats.getMax()); System.out.println("Min Marks: " + mStats.getMin()); System.out.println("Average Marks: " + mStats.getAverage()); System.out.println("Sum : " + mStats.getSum()); List Double accountBalance = Arrays.asList(10000.89, 20000.77, 5000.66, 5500.55, 7000.88, 30000.99, 50000.00); DoubleSummaryStatistics aStats = accountBalance.stream().mapToDouble(x -> x).summaryStatistics(); System.out.println("## Balance statistics ##"); System.out.println("Max Balance: " + aStats.getMax()); System.out.println("Min Balance: " + aStats.getMin()); System.out.println("Average Balance: " + aStats.getAverage()); System.out.println("Sum : " + aStats.getSum());
Let's consider a Lucky Draw Contest where contestants send SMSs, and we select 3 random winners:
We will follow the following procedure to select 3 winners:
class Contestant { public String phone = null; public Contestant(String n, String p) { name = n; phone = p; } } ArrayList Contestant list = new ArrayList Contestant(); list.add(new Contestant("Ram", "9912345678")); list.add(new Contestant("Shyam", "9912342222")); list.add(new Contestant("Ajay", "9912345770")); list.add(new Contestant("Vijay", "9912345678")); list.add(new Contestant("Jay", "9912345888")); list.add(new Contestant("Pappu", "9912345111")); list.add(new Contestant("InvalidNO", "11"));
list.stream().map(e -> e.phone)
list.stream().map(e -> e.phone).filter(e -> e.length() == 10)
list.stream().map(e -> e.phone).filter(e -> e.length() == 10).distinct()
list.stream().map(e -> e.phone).filter(e -> e.length() == 10).distinct() .collect(Collectors.collectingAndThen(Collectors.toList(), e -> { Collections.shuffle(e); return e.stream(); }))
list.stream().map(e -> e.phone).filter(e -> e.length() == 10).distinct() .collect(Collectors.collectingAndThen(Collectors.toList(), e -> { Collections.shuffle(e); return e.stream(); })).limit(3)
list.stream().map(e -> e.phone).filter(e -> e.length() == 10).distinct() .collect(Collectors.collectingAndThen(Collectors.toList(), e -> { Collections.shuffle(e); return e.stream(); })).limit(3).forEach(e -> System.out.println(e));
WOW !!! Its very simple !!
Find source code at GIT
Java Streams API is a powerful tool for processing collections of data with a clean, readable syntax. By using Streams, you can efficiently filter, map, and reduce data while leveraging modern programming practices.